Tibetan Sentiment Classification Method Based on Semi-Supervised Recursive Autoencoders
نویسندگان
چکیده
منابع مشابه
Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions
We introduce a novel machine learning framework based on recursive autoencoders for sentence-level prediction of sentiment label distributions. Our method learns vector space representations for multi-word phrases. In sentiment prediction tasks these representations outperform other state-of-the-art approaches on commonly used datasets, such as movie reviews, without using any pre-defined senti...
متن کاملSentiment Analysis Using Semi-Supervised Recursive Autoencoder
The aim of this project was to use semi-supervised recursive autoencoder provided by [2] and classify the english phrases from movie reviews into five sentiment classes; very positive, positive, neutral, negative and very negative by softmax regression classifier.
متن کاملSemi-Stacking for Semi-supervised Sentiment Classification
In this paper, we address semi-supervised sentiment learning via semi-stacking, which integrates two or more semi-supervised learning algorithms from an ensemble learning perspective. Specifically, we apply metalearning to predict the unlabeled data given the outputs from the member algorithms and propose N-fold cross validation to guarantee a suitable size of the data for training the meta-cla...
متن کاملSemi-supervised Learning for Sentiment Classification
With the growing need of identifying opinions and sentiments automatically from online text data, sentiment classification tasks have received considerable attention recently. One can treat sentiment classification as a text classification problem, however, it is very time-consuming and somewhat impractical to acquire enough labeled data to train a good sentiment classifier. This paper investig...
متن کاملSemi-Supervised Learning for Imbalanced Sentiment Classification
Various semi-supervised learning methods have been proposed recently to solve the long-standing shortage problem of manually labeled data in sentiment classification. However, most existing studies assume the balance between negative and positive samples in both the labeled and unlabeled data, which may not be true in reality. In this paper, we investigate a more common case of semi-supervised ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers, Materials & Continua
سال: 2019
ISSN: 1546-2226
DOI: 10.32604/cmc.2019.05157